中交路桥科技有限公司

中文版 ENGLISH

咨询电话:17736920826

钢结构检测 > 行业知识 > 神经网络技术在土木结构健康监测中的应用发展
神经网络技术在土木结构健康监测中的应用发展
日期:2017-9-8 9:40:46 作者:佚名 来源:本站原创
新闻中心
    随着社会经济的发展,土木结构建设的趋势是“高、大、长”,因而对结构安全性的要求也越来越高,建立大型结构的智能健康监测系统已成为土木工程学科发展的重要领域[1, 2]。 
  一个完整的智能健康监测专家系统简单来说可以分为三个部分[3],即信号采集、信号处理和损伤诊断。其中损伤诊断是健康监测的核心问题,是对结构进行安全性评估和维护决策的基础。目前损伤诊断方法有多种,而人工神经网络(简称ANN)诊断技术在知识获取、并行推理、适应性学习、联想推理、容错能力等方面具有较大的优越性。   
  1. 神经网络在损伤识别诊断中得应用 
  神经网络技术之所以适合于结构损伤诊断,主要有三个原因[4],①训练过的神经网络能够存储有关过程的知识,根据对象的正常历史数据训练网络,然后将此信息与当前测量数据进行比较,以确定损伤。②神经网络具有滤出噪声及在有噪声情况下得出正确结论的能力。③神经网络具有分辨损伤原因及损伤类型的能力。 
  损伤诊断可分为无模型识别法(Free-Model)和有模型识别法(Model-Based)两大类[5]。 
  无模型识别是指损伤识别过程中不需要建立结构的数学与力学模型,完全基于结构现场实时检测数据并考虑专家经验建立结构状态知识库,然后采用人工神经网络诊断技术进行诊断。因为结构在不同状态下其本身的某些往往会发生变化,这些变化包含了结构损伤位置和损伤程度的信息,根据结构特性变化分析就可以反演结构是否存在损伤以及损坏位置和损伤程度。这是一个反分析过程,需要建立结构关键性能指标变化与结构状态的非线性关系。人工神经网络通过对实测数据加专家经验建立的知识信息进行学习,通过权值记下所学过的样本知识并掌握输入、输出之间复杂的非线性关系。在诊断过程中,根据实测关键性能指标的变化与储存在已建知识库的各种状态的损伤识别量进行模式匹配来进行结构的损伤检测与诊断。建立在实测数据基础上的专家数据知识库,其知识信息具有真实性、连续性、准确性,可以不断更新。 
  基于模型的损伤诊断技术是在结构健康诊断过程中,通过建立精细的能够反映结构的真实形态的结构数学与力学模型,分析计算结构在各种状态下的参数指标,辅助实测数据以及考虑专家经验建立结构状态知识信息库,利用人工神经网络的模式识别功能进行结构损伤状态的诊断。所谓精细的模型是指理论分析的数据应该和实测数据吻合得较好,两者偏差要在允许范围内,这与设计分析所需建立的计算模型相比要求更加严格,如果用于损伤识别的模型存在较大的模型误差,会使计算的参数产生与损伤引起的参数改变相当,甚至更大的偏差,就可能使基于这些参数改变的损伤检测方法识别结果较差,甚至失效。 
  通常采用有限元法建立结构力学模型作为损伤诊断的基准参考。进行精细有效的有限元动力分析,一种方法是利用商业化软件如ANSYS、ABAQUS和ADINA等。但这些程序对于一些结构有特殊要求的分析就无能为力,例如混凝土坝考虑动水压力影响下的动力分析。这就需要利用自编程序来进行分析,但是工作量较大。但已有的有限元模型修正技术仅适用“小误差模型”的修正[6],而较大“误差”的情况则属于非适定的、非线性的问题。人工神经网络强大的非线性映射功能就非常适合解决结构模型修正中非线性问题[7]。建立结构有限元力学模型,选择不同的材料物理参数与边界条件可以计算不同的结构响应,因此结构响应和结构设计变量之间存在复杂的映射函数关系,这种近似映射函数关系用常规方法来确定比较困难。在前苏联数学家Kolmogorov提出的任意连续函数表示定理基础上,Robert HN提出了Kolmogorov多层神经网络映射存在定理,从理论上论证了一个任意的连续函数都能与一个三层神经网络建立映射关系。这为人工神经网络用于结构模型修正提供了理论基础[7]。 
  2. 基于神经网络损伤诊断的两级识别策略 
  采用人工神经网络方法对结构损伤的发生、定位和损伤类型与程度进行研究,可以采用基于网络判别指标过滤方法的两级识别策略[8]。 
  2.1 自适应神经网络方法检测结构损伤 
  自适应神经网络方法(Auto-associate Neural Network)利用健康结构在正常情况下的序列测量数据作为训练人工神经网络的输入和输出数据X,Y,依次构造一个自相关的神经网络Net=T(X→Y)。训练完成后,将输入数据X再次输入已训练的神经网络Net以便得到一组网络输出数据,比较测量数据Y和网络输出数据的差值向量,采用某种距离测度函数加以测量形成健康结构的判别指标。判别指标可以采用结构某个动力特性参数加以构造,也可将多个动力特性参数同时考虑加以构造。具体结构中最终如何构造判别指标,需要根据结构特点进行判别指标对结构损伤的敏感度的分析加以确定。 
  当同一个结构可能发生损伤以后的测量数据被作为输入数据通过已经训练的神经网络Net,由本次输入数据和输出数据可以计算得到的新的判别指标,与健康结构的判别指标相比较,就可以预告结构是否发生损伤。如果两者差值(可以称为损伤指标)较大,就认为结构已经发生损伤。 
  2.2 概率神经网络方法检测结构损伤的位置和类型 
  结构损伤指标的判定通常只能检测损伤的发生,难以确定损伤的位置和损伤的类型。概率神经网络(Probabilistic Neural Network,简称PNN)可以用于判定损伤的位置和类型。 
  PNN[9-11]是通过具有无参数估计量的已知数据集的概率密度函数来实现贝叶斯决策,将其加在人工神经网络框架中,接着进行判别未知数据最大可能属于哪个已知数集,对于具有,,…,,…,的多类指标问题来说,基于p维试验向量X的贝叶斯决策d(X)为: (1) 
  式中――分类指标的先验概率 
   ――与错误分类的相关损失,在损伤检测问题中两者通常假定相等 
   ――概率密度函数 
  采用多变量高斯(Gauss)分布函数: 
   (2) 
  将该贝叶斯决策映射为一个人工神经网络构成一个概率神经网络,该网络分为四层,即输入层、模式层、求和层和决策层,如图1所示。 
  输入向量X的每个元素作为输入层的输入参数。由权重向量和向量X的点积构成中间层的神经元,而相对于分类号q的决策层神经元输出为: 
  (3) 
  式中 ――高斯核的标准差 
  传统PNN对所有高斯核都采用统一的值。影响传统PNN广泛应用的最大障碍就是所有的参数具有同一个参数值。对于自适应PNN,每一测量维数具有不同的参数。 
  假定具有不同损伤部位(即损伤模式)和不同刚度损伤程度(如0%,20%,75%和90%)的有限元分析得到的模态数据作为输入数据输入PNN进行训练,数据可以加入或者不加入环境“污染”分量。损伤位置或类型假定有多种。如果结构损伤标识量选用自振频率变化率,输入向量X为P个自振频率变化率,将带有某种类型损伤(或混合模式损伤)的实测模态数据输入训练好的PNN,则得到决策层(输出层)各个损伤形态在试验向量点对应的概率密度函数PDF的估计值,具有最大PDF的损伤模式将给出损伤的位置或者类型。 
  这种损伤诊断方法最大优势在于可以降低测量误差对损伤识别结果的影响。因为损伤识别指标对模态参数变化率敏感,对于具有相同环境“污染”程度的前后两次数据,其“污染”造成的误差可以抵消,从而对损伤识别精度的影响较小。从本质上说,如果网络训练阶段并不需要数学模型分析而直接采用健康结果的实测数据,则神经网络算法并不需要数学模型,这也是该算法的一个优点。 
  研究表明[12, 13],在损伤诊断过程中,模型误差对损伤识别结果的影响要比测量误差小,而且随着损伤程度的增加而变化不大。用误差≯10%的模型来训练人工神经网络,是完全可以接受的。神经网络对损伤的识别结果受测量误差影响较大,但随损伤程度的增加而降低。改善测量误差,降低其对识别结果的影响极其重要。 
  3. 基于WPNN与数据融合的损伤检测方法 
  近年来。不断发展起来的多传感器数据融合(或称信息融合)技术以其强大的时空覆盖能力和对多源不确定性信息的综合处理能力,可以有效进行结构系统的监测和诊断。虽然目前基于动力响应的各种智能损伤诊断技术得到研究,但这些技术存在着识别精度不高或适用条件等缺陷。目前迅速发展的数据融合技术具有充分利用各个数据源包含的冗余和互补信息的优点,可以提高系统决策的准确性和鲁棒性。姜绍飞等[14]提出的基于小波概率神经网络(wavelet probabilistic neural network WPNN)和数据融合的结构损伤检测方法将两者有机结合,推动了神经网络技术在土木结构健康检测中应用的发展。 
  3.1 数据融合 
  数据融合是多源信息综合处理的一项新技术,是将来自某一目标(结构)的多源信息加以智能化合成,得到比单一传感器更精确、更完全的估计,其有点突出表现在信息的冗余性、容错性、互补性、实时性和低成本性。神经网络是由大量单元组成的非线性大规模自适应动力系统,具有学习、容错、记忆、计算以及智能处理,二者在结构上存在着相似性,可以充分利用神经网络的结构优势,考虑传感器或者信息处理单元之间的互相影响、互相制约的关系,体现了信息融合系统是一个有机的整体,而不是多种信息的罗列和简单的代数加减关系。根据信息(数据)表征的级次,数据融合可以分为数据级融合、特征级融合和决策级融合。 
  3.2 小波变化及小波概率神经网络 
  设函数,如果满足,则称为基本小波或母小波。将母小波函数伸缩和平移,得到的函数称为小波函数,简称小波。 
  设信号,则其小波变换定义为 
  基于小波变化的神经网络称为小波神经网络,它是小波分析与神经网络的融合(结合)二者的结合有两种途径:其一,将小波分析作为神经网络的前置处理手段,为神经网络提供输入特征向量,也称松散型小波神经网络、其二,将小波分析与神经网络直接融合,即以小波函数和尺度函数来形成神经元,也称紧凑型小波神经网络。小波神经网络继承了小波分析与神经网络的优点,通过训练自适应地调整小波基的形状实现小波变换,具有良好的函数逼近能力和模式分类能力。 
  3.3 基于WPNN与数据融合的损伤检测方法 
  为了充分发挥数据融合与WPNN的优点,提出了基于WPNN与数据融合的损伤模型(见图2),它首先将来自传感器1的结构响应进行数据预处理、特征提取,采用小波理论,获得该传感器的小波能量特征向量;依次类推,获得其他传感器的小波能量特征向量;然后将这些小波能量特征向量放入WPNN中,进行神经网络训练及融合计算;最后根据最大的概率密度函数值得到融合损伤识别结果及损伤类型。 
  为了验证该方法的有效性,姜绍飞运用美国土木工程学会提出的一个4层钢结构框架模型进行验证[14]。通过验证可见,基于WPNN与数据融合的损伤检测方法的识别效果比用单传感器进行损伤识别分类的效果好,它对损伤最敏感,受噪声的干扰影响最小;另一方面也说明,数据融合能够使不同传感器的信息相互补充,从而减小了损伤检测数据(信息)的不确定性,使结构的信息具有更高的精度和可靠性,进而能够获得更准确的损伤识别结果及最优的结构状态估计。 
  4. 用于损伤诊断的神经网络输入参数选择 
  采用什么参数作为神经网络的输入向量是利用人工神经网络进行结构损伤诊断中需要考虑的极其关键的一个问题。神经网络输入参数的选择及其表达形式直接影响损伤诊断的结果。采用结构动力参数作为结构损伤识别的方法现在得到大量的应用。其原因一方面是结构动力参数是结构本身固有特性,受外界环境干扰较小。另一方面结构自振频率和振动模态等动力参数比较容易从少量的动态测量中得到,而且测量方法比较简单。基于结构动力特性的损伤诊断方法,其基本思想是结构的物理参数如刚度、质量和阻尼比等在结构不同状态中的变化会改变结构动力特性――固有频率和模态。因此可以根据结构的固有频率、模态振型或者两者一起考虑等方法进行检测,另外还可以利用这些模态参数计算模态曲率、应变模态、结构柔度、模态阻尼比等力学指标,然后采用神经网络算法等对结构的损伤发生、损伤定位、损伤程度进行检测。对于简单的构件来说,采用结构固有振动频率作为网络输入参数就可以得到良好的诊断结果[15-17]。固有频率可以在结构的一个点上测到,并且与测点位置相对独立,是一个能反映结构整体的动力特性。但对于一般结构,固有频率包含的结构损伤信息还不足以进行识别与定位,例如对称结构,两个对称位置的损伤所引起的固有频率变化是完全相同的。因此有人建议采用固有频率和关键点的振型模态作为组合参数进行神经网络损伤诊断比较实用[18, 19],这可以解决对称结构和测量模态数据不完备问题。 
  对于结构损伤诊断来说,固有频率和振动模态是检测的全局量,可以用来对结构整体状态进行描述。但对于复杂结构,像大跨径桥梁,其赘余度大,造成结构局部损伤对整体性能反映影响不大,也就是说全局参数指标对局部损伤不敏感。例如结构局部损伤导致的固有频率变化很小,估计<5%,而Askegaurd等人在对桥梁长期观测后发现,在1a(年)内大桥即使无任何明显的变化,其自振频率的变化也可以达到10%[20]。有的研究表明,频率模态对局部损伤的位置和程度都不敏感。不同位置、不同程度的损伤可能导致结构模态频率相同的变化[21]。 
  采用全局量可以判断结构是否损伤,而用于结构损伤定位的物理参数需要选择局域量,且需满足四个基本条件[22],①对局部损伤敏感,且为结构损伤的单调函数。②具有明确的位置坐标。③在损伤位置,损伤标识量应出现明显的峰值变化。④在非损伤位置,损伤标识量或者不发生变化,或者变化幅度小于预定的阈值。 
  陆秋海[23]比较了六种不同输入参数对于结构损伤的敏感程度。得到的结论是,六种输入参数对结构损伤的敏感程度从低到高依次为:位移模态指标、固有振动频率指标、位移频响函数指标、曲率、应变模态指标以及应变频响函数指标。相比较来看,应变模态指标是较好的结构动力损伤诊断的损伤识别标识量,而且有对结构局部损伤敏感的优点,可以用作大型土木结构局部损伤定位的人工神经网络诊断输入参数。 
  5. 用于损伤诊断的神经网络选择 
  人工神经网络是在人类对其大脑神经网络认识理解的基础上人工构造的能实现某种功能的神经网络。它是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。 
  人工神经网络发展几十年来,形成了数十种网络,包括多层感知器,BP网络、Hopfield网络、RBF网络、自适应共振理论和概率神经网络等等。这些网络由于结构不同,应用范围业有所不同,但这些神经网络模型原则上讲都可用来进行结构损伤诊断,只是存在简单与复杂、稳定与不稳定、诊断效果高低与诊断结果好坏的差别。前面介绍的大型结构基于神经网络的两级损伤识别策略是采用以自适应共振理论为基础的自组织神经网络和概率神经网络。 
  建立大型土木结构的智能健康监测专家系统,首先要建立损伤诊断的子系统。采用人工神经网络进行记诶构损伤诊断,首先要根据各种神经网络的特点和适用范围,选择解决自己问题的合适模型,然后采用某种程序语言进行编制。若采用商业化软件建立损伤诊断子系统,则不能很好地与信号采集系统及专家知识库进行有效链接,从而妨碍实施在线检测与连续诊断。Matla现已成为国际上公认的最优秀的数值计算和仿真软件,其强大的扩展功能为各个领域的应用提供了基础,由各个领域的专家在Matlab平台上推出了30多个应用的工具箱。神经网络工具箱是Matlab环境下所开发的许多工具箱之一,它是以人工神经网络理论为基础,用Matlab语言构造出各种神经网络算法。因此建立人工神经网络进行损伤诊断时,利用Matlab语言可以减少工作量,提高效率。  
  参考文献: 
   [1] 李宏男,李东升. 土木工程结构安全性评估、健康监测及诊断述评[J]. 地震工程与工程振动. 2002(3): 82. 
   [2] 谢强,薛松涛. 土木工程结构健康监测的研究状况与进展[R]. , 2001. 
   [3] 周智,欧进萍. 土木工程智能健康监测与诊断系统[J]. 传感器技术. 2001, 20(11): 1-4. 
   [4] 姜绍飞,周广师,刘红兢,刘明. 考虑不确定性因素的结构损伤检测方法[J]. 沈阳建筑工程学院学报(自然科学版). 2002(2): 85-87. 
   [5] 陈长征,罗跃刚等. 结构损伤检测与智能诊断[M]. 北京: 科学出版社, 2001. 
   [6] 张德文,魏阜旋. 模型修正与破损诊断[M]. 北京: 科学出版社, 1999. 
   [7] 段雪平, 朱宏平, 熊世树. 神经网络在建筑物有限元模型修正中的应用[J]. 噪声与振动控制. 2000(2): 11. 
   [8] 姜绍飞. 基于神经网络的结构优化与损伤识别[M]. 北京: 科学出版社, 2002. 
   [9] 王柏生,倪一清,高赞明. 用概率神经网络进行解雇损伤位置识别[J]. 振动工程学报. 2001, 14(1): 60-64. 
  [10] 姜绍飞,倪一清,高赞明. 基于概率神经网络的青马悬索桥定位的仿真研究[J]. 工程力学. 2001: 965-969. 
  [11] 杜德润. 地震作用下大体积混凝土结构损伤识别研究[D]. 南京: 东南大学, 2002. 
  [12] 王柏生,丁皓江,倪一清,高赞明. 模型参数误差对用神经网络进行结构损伤识别的影响[J]. 土木工程学报. 2000(1): 50-55. 
  [13] Wang Bai-sheng,ni Yi-qing K J. Influence of measurement errors on structural damage identification using artificial neural networks[J]. Journal of Zhenjiang University. 2000, 1(3): 191-299. 
  [14] 姜绍飞,付春,陈仲堂, 盛岩. 基于WPNN与数据融合的损伤检测方法[J]. 沈阳建筑大学学报(自然科学版). 2005(2). 
  [15] 陈建林,郭杏林. 基于神经网络的简支梁损伤检测研究[J]. 烟台大学学报(自然科学与工程版). 2001(3). 
  [16] 罗跃纲, 陈长征, 王占国. 钢梁损伤的神经网络诊断分析[J]. 工业建筑. 2002(1). 
  [17] 罗跃纲, 刘红兢, 王政奎. 钢板结构损伤对其动力特性的影响研究[J]. 沈阳工业大学学报. 2002(3). 
  [18] 郭国会,易伟建. 基于神经网络的框架结构破损评估[J]. 重庆建筑大学学报. 1999, 21(3): 106-121. 
  [19] 王柏生,倪一清,高赞明. 框架结构连接损伤识别神经网络输入参数的确定[J]. 振动工程学报. 2000, 13(1): 137-142. 
  [20] 雷俊卿,钱冬生. 长大跨桥实时监测预警系统研究[J]. 公路. 2002(2): 1-4. 
  [21] 瞿伟廉,陈伟. 多层及高层框架结构地震损伤诊断的神经网络方法[J]. 地震工程与工程振动. 2002, 22(1): 43-48. 
  [22] 董聪,范立础,陈肇元. 结构智能健康诊断的理论与方法[J]. 中国铁道科学. 2002, 23(1): 11-24. 
  [23] 陆秋海. 基于应变模态理论的结构修改和损伤神经网络辨识法研究[D]. 北京: 清华大学, 1997. 

更多相关信息 还可关注 中交路桥工程检测 公众号 扫一扫下方二维码即可关注


热门版块: | 钢结构检测桥梁检测隧道检测
首页 | 企业简介 | 企业文化 | 公司业务 | 人才招聘 | 联系我们
Copyright@2014 中交路桥 All Rights Reserved. 冀ICP备12000803
友情链接:企业选址 | 市政设计| 管线探测|连锁店装修|膜结构车棚 |环境工程设计|悬浮地板 |地铁led | 桥梁切割 | 网站地图
TAG标签: 桥梁检测 隧道检测 钢结构检测 结构健康安全监测
>